Verio’s Virtual Private Server

Fred Clift

Manager VPS
Development

801-437-7471

clift@verio.net

Build on us.

An NTT Communications Company

Internet Hosting Pioneer

Business Unit of NTT

What do we use FreeBSD for?
- Virtual/Managed Private Server (VPS/MPS)
- Signature Hosting line (traditional shared hosting)
- Infrastructure
- CPS (even our power strips run FreeBSD!)

Manage Dev team for VPS/MPS products

A

Overview - why are you here?

e Not directly about Jail(8) (yet!) Verio’s
background.

e« Why limit?
o User/Software Perception + examples
e Techniques

« What Verio can do for you

A

Intro

Buzzword of the week: Virtualization, Multi-tennancy,
Software as a Service, Virtual Appliances, Platform as a
Service

What do they all have in common? Share a computer with
uncoordinated, competing applications. (compare to big-
iron running a single app)

Examples: Traditional Internet Hosting (FAMP), server
consolidation, virtual dev/test environments,
preconfigured SaaS application deployment

3 Virtual partitions on your server

—

e As an application, how do you handle being out of RAM?
Disk space? Life sucks.

e Less performance
« The flipside: Predictable performance for all
o “Large Startup” apps

e Burstiness! The Magic Bullet

A

From the Physical Server/Provider side

Try to share physical resources fairly, or better, unfairly
aka “proportional”.

Large Startup apps - e.g. JVM - You can’t set memory
limits usefully low enough (little shared code space, large
absolute usage)

For a limit to be useful, you need steady-state, long-term
to be restrictive

Overcommit (statistics or application knowledge help!)

Burstiness! The Magic Bullet

Burstiness - The Magic Bullet

Example: Disk Bandwidth
Ensure each of 30 virtual FreeBSD instances has some

30 MB/Sec (mediocre hardware...)
- Split this between 30 Virtual FreeBSD boxes

 Naive way - Low limits- Limit each instance to 1MB/sec
- Achieves desired effect
- Performance always terrible
- My 10 year old ATA drive does better!

e Better way - Overcommit- limit instance to 10 MB/sec
- Achieves desired effect
- Performance seems mediocre, but passable
- My 10 Year old ATA drive does better!

- Can’t “Ensure” performance - best effort - 3 instance have to all be
hogs to saturate - look at stats

Burstiness - The Magic Bullet

Even better way - Burst limits
e Allow applications to burst

Limit long-term/steady-state to 10%

e Achieves desired effect

« End User Perspective usually good

« Takes advantage of natural burstiness in applications

« Still prevents Resource Starvation for long-term abusers

e How?

e Any periodic process - pop/imap of email
« Temporal Locality in website access
« Builds on servers ‘make buildworld’

e Incoming mail with ClamAV/SpamAssassin

Anything people/applications use, or abuse

Traditional ones (man getrlimit):
- CPU time
- Disk space
- Per-proc Memory usage
- File descriptors
- nproc

Others
- Disk 1/0 BW
- Network BW
- Syscall rate-limits - e.g. mysql runnaways
- Mail queue injection limits (gmail) - spam spam spam
- Multi-level quotas

“small application tuning” - e.g. mysql/innodb

First, generally only limit virtual instances - leave
physical server stuff unlimited, or even give it a
preference.

Figure out what to measure and calculate
- Sleep the thread if the account needs to be limited

Takes statistics and care
- Will cause problems.

- Signature NTT backup example
30 virtual instance of FreeBSD, 30 Gig disk quotas, 300G of usable space.

- Syscall rate-limit example.
- Disk-10/nproc example

e Modify limiting system to use some bursting measure,
combine with overallocation - Burstiness
- Still need to understand your users/applications
- Need stats, but it’s more forgiving

« Two ways we do burst-based limits “shaping”.
- “load average” bursting
- Variants on Token-Bucket

Load Average based shaping

Uses same “exponential decay sliding-window average” that FreeBSD uses
to calculate load average

Simple to calculate estimate of recent usage

Sort of Integration/Area under curve of samples in a specific time window

Sliding window of 2

sl |

0.8 +
0.7 +

0.6 +

05+ ~
0.4+ ;
03+ ? ‘

0.2 +

utilization

0.1+

Load Average based shaping

Hard and Soft limit

0.9 +

0.8 +

0.7

0.6 +

0.5 +

0.4+

utilization

0.3 +

0.2 +

0.1 +

Load Average Based Shaping

Actual Allowed Usage

094
084
0.7 4
061 ? \

H

0.5 +

0.4+

utilization

0.3 +

0.2 +

0.1 +

to t1 2 t3 t4 t5 6 t8 t9 t10

17
time

A

Load Average based Shaping

e Use standard FreeBSD function for calculating usage

e Has been used for Network Bandwidth Disk 1/0, Syscall
Rate-Limit, kind of CPU

« Specify a Hard limit - can never excede - short term burst
to this limit, and a Soft limit - long term steady-state
under demand.

« Simple to calculate, hard to know where to insert the
checks for shaping - locking.

Load Average based shaping

« Two main negatives
Hard to explain/understand/tune

The burst time is proportional to the ratio of Hard and Soft

(syscall limit example)
Hard a
0.9 +
0.8 +
0.7 +

0.4 4

itilization
HE
| T

e Possible fix - add third parameter to specify window size
(complicates the algorithm, adds a 374 parameter to tune)

e Possible fix - replace the algorithm with popular Token
Bucket implementation

« The primary algorithm we still use - slowly replacing.

Token Bucket based shaping

Each operation that consumes
resources also consumes a token.

You have a fixed-size bucket being
filled at a fixed rate

If your bucket is full, it ‘overflows’ -
tokens discarded

Two tuneables - Fill rate and Bucket
size.

No limit on short term burst rate

Long term burst rate dependent on
bucket fill rate

Tokens fill at
constant rate

Request
q > Allocate/use
resource
resource

Consume token
per unit of
resource.

Thread sleep if
no tokens

A

Token Bucket based shaping

« Simple calculations

« Easy to explain the metaphor

« Easier to tune than Load Average shaping
e Burst time is dependent on bucket size

« BUT, no short term rate limit (can be extended -
use a drain rate at the cost of extra complexity, use
leaky-token-bucket)

Token Bucket example

0.9 +

0.8 +

0.7 +

0.6 +

0.5 +

0.4+

utilization

0.3 +
0.2 +

0.1+

0 | | | | | | | | | :.:.:

to t1 t2 t3 t4 t5 t6 t8 t9 t10

= tirt';\e

What Verio is Doing

e BSD license on our Freebsd (4.x, 6.x 7.x) mods
- Waiting on lawyers
- We’re (Verio Developers...) eager
- Not useful unless we merge

e Merging with (very similar) Vimage framework
- Resource measurement/limits
- Userland framework? Probably need something new
- Virtlink system/virtual mounts - unionFS merge? Fix?

e When? RSN

« What else are we doing? ISCSI initiator, DTrace, Kernel,
Peter Holm’s Kernel Stress test suite

« Get a copy of this at:
o http://clift.org/fred/bsdcan2008.pdf

« Contact me:
Fred Clift
fclift@verio.net

